CVS II:
Parallelizing Software Devdopment

Brian Berliner

Prisma, Inc.
5465 Mark Dabling Blvd.
Colorado Springs, CO 80918
berliner@prisma.com

ABSTRACT

The program described in this paper fills a need in the UNIX community
for a freely aailable tool to manage software revision and release control in a
multi-developer, multi-directory, multi-group ewironment. This tool also
addresses the increasing need for tracking third-pamgaer source distriliions
while trying to maintain local modifications to earlier releases.

1. Background

In large software delopment projects, it is usually necessary for more than one a@ftw
developer to be modifying (usually different) modules of the code at the same 8ome of
these code modifications are done in gpeeimental sense, at least until the code functions cor
rectly, and some testing of the entire program is usually neces3amgn, the modifications are
returned to a master source repository so that others in the project cathenj@v bug-fix or
functionality In order to manage such a project, some sort of revision control system is neces-
sary.

Specifically UNIX?! kernel deselopment is an excellent example of the problems that an
adequate revision control system must addr@s SunOSkernel is composed ofver a thou-
sand files spread across a hiergrohdozens of directoriePieces of the kernel must be edited
by mary software deelopers within an aganization. While undesirable in theoryit is not
uncommon to hae two o more people making modifications to the same file within &
sources in order to facilitate a desired change. Existivigiom control systems [&krcs[Tichy]
or sccs[Bell] serialize file modifications by allowing only onevétoper to hae a witable copy
of a particular file at gnone point in time. That deloper is said to hae “locked” the file for his
exclusive wse, and no other deloper is allowed to check out a writable gagf the file until the
locking developer has finished impeding others’ produityi. Devdopment pressures of produc-
tivity and deadlines often forceganizations to require that multiple wopers be able to simul-
taneously edit copies of the same revision controlled file.

LUNIX is a registered trademark of AT&T.
23un0S is a trademark of Sun Microsystems, Inc.
3 Yes, the SunOS 4.0 kernel is composedvaf a thousandiles!

www.manaraa.com

2.

The necessity for multiple gelopers to modify the same file concurrently questions the
vaue of serialization-based policies in traditional revision contrbhis paper discusses the
approach that Prisma took in adapting a standard revision control systgrdong with an
existing public-domain collection of shell scripts that sits akggand provides the basic con-
flict-resolution algorithms.The resulting prograntgvs, aldresses not only the issue of conflict-
resolution in a multi-desloper open-editing environment, but also the issues of software release
control and vendor source support and integration.

2. TheCVS Program

cvs (Concurrent ¥rsions System) is a front end to #esrevision control system which
extends the notion of wsion control from a collection of files in a single directory to a hierarchi-
cal collection of directories each containingiseon controlled files. Directories and files in the
cvssystem can be combined together in ynamys to form a software releasevs provides the
functions necessary to manage these software releases and to control the concurrent editing of
source files among multiple softwarevdepers.

The six major features alvs are listed belw, and will be described in more detail in the
following sections:

1. Concurrentaccess and conflict-resolution algorithms to guarantee that source
changes are not “lost.”

2. Supportfor tracking third-party vendor source disuiibns while maintaining the
local modifications made to those sources.

3. A flexible module database that provides a symbolic mapping of nhames to compo-
nents of a larger software distiifion. Thissymbolic mapping pnades for location
independence within the software release and, for example, allows one to check out a
copy of the “diff” program without ger knowing that the sources to “diff” actually
reside in the “bin/diff” directory.

4. Configurablelogging support allows all “committed” source file changes to be
logged using an arbitrary program toveahe log messages in a file, notesfile, or
news database.

5. Asoftware release can be symbolically tagged and checked out titnenbased on
that tag. An exact cgpof a previous software release can be checked out yt an
time, regardlessof whether files or directories ¥ been added/renved from the
“current” software release. As well, a “date” can be used to check oatahever-
sion of the software release as of the specified date.

6. A “patch” format file [Wall] can be produced betweerotsftware releasesyen if
the releases span multiple directories.

The sources maintained fays are kept within a single directory hieraychnowvn as the
“source repository This “source repository” holds the actuwats®,v” files directly, as well as a
special per-repository directorg{SROOr.adm) which contains a small number of administrati
files that describe the repository andvhibcan be accessed. See Figure 1 for a picture afvube
tree.

2.1. Softwae Conflict Resolutior

4 The basic conflict-resolution algorithms used indisprogram find their roots in the original
work done by Dick Grune at Vrije Uwérsiteit in Amsterdam and posted ¢omp.sources.unixn
the volume 6 release sometime in 1986. This original versiocvefvas a ollection of shell

www.manaraa.com

/src/master

CVSROO.adm etc

loginfo,v modules,v wfs Makefile,v halt.c,v

Makefile,v mkfs.c,v newfs.c,v

Figure 1
cvsSource Repository

cvs allows seeral software dedlopers to edit personal copies of a revision controlled file
concurrently The revision number of each checked out file is maintained independently for each
user and cvs forces the chedd out file to be current with the “head” revision before it can be
“committed” as a permanent chang&.checlked out file is brought up-to-date with the “head”
revision using the “update” command ©fs This command compares the “headVisgon num-
ber with that of the usex’file and performs arcsmeme operation if theare not the sameThe
result of the merge is a file that contains the sseddifications and those modifications that
were “committed” after the user chexkout his version of the file (as well as a backupy @bp
the uses aiginal file). cvspoints out ap conflicts during the mee. Itis the uses responsibil-
ity to resole these conflicts and to “commit” his/her changes when ready.

Although thecvs conflict-resolution algorithm as defined in 1986, it is remarkably similar
to the “Copy-Modify-Merge” scenario included with NSEnd described in [Honda] and [Ceur
ington]. Thefollowing explanation from [Honda] also appliesces

Simply stated, a deloper copies an object without locking it, modifies theycapd

then merges the modified gowith the original. This paradigm allows delopers to

work in isolation from one another since changes are made to copies of objects.
Because locks are not usedy@epment is not serialized and can proceed in parallel.
Developers, havever, must mege objects after the changewvédeen made. In par
ticular, a cevdoper must resoly oonflicts when the same object has been modified by
someone else.

In practice, Prisma has found that conflicts that occur when the same object has been modi-
fied by someone else are quite rare. Whew tleehappen, the changes made by the otheelde
oper are usually easily reseld. Thispractical use has shown that the “@d@odify-Merge”
paradigm is a correct and useful one.

scripts that combined to form a front end to ®esprograms.
5 NSE is the Network Software Environment, a product of Sun Microsystems, Inc.

www.manaraa.com

-4-

2.2. Tracking Third-Party Source Distributions

Currently a large amount of softare is based on source distributions from a third-party
distributor It is often the case that local modifications are to be made to this diginpandthat
the vendors future releases should be tradk Rollingyour local modifications forward into the
nev vendor release is a time-consuming taskt dvs can ease this burden somi@t. The
checkin program ofcvsinitially sets up a source repository by integrating the source modules
directly from the endors release, preserving the directory hiergradhithe vendors dstribution.
The branch support afcsis used to build this vendor release as a branch of the raaitiunk.
Figure 2 shows he the “head” tracks a sample vendor branch when no local modificatisas ha

been made to the file.

f---= 1114 'SunOS_4 03
|
|
|
|
|
|
|
| 1.1.1.3 "YAPT_5_5C’
|
|
"HEAD" ~-------- : i

| |

| |

| | 1.1.1.2 'SunOS_4 0 T

Lo

|

|

|

1.1 o 1.1.1.1 'SUnOS_4_0’
'SunOS’
rcsfile.c,v
Figure 2

cvsVendor Branch Example

Once this is done, @elopers can check out files and redkcal changes to theemdors urce
distribution. _Thesdocal changes form a nebranch to the tree which is then used as the source

www.manaraa.com

for future check outsFigure 3 shows he the “head” mees to the mainrcstrunk when a local
modification is made.

1.1.1.4 'SunOS 4 0 3
i "HEAD"
| 1.1.1.3 "YAPT_5 5C’
|
|
|
1
v
1.2 1.1.1.2 'SunOS 4 0 1
11 1.1.1.1 'SUNOS_4_0'
'SunOS’
rcsfile.c,v
Figure 3

cvsLocal Modification to Vendor Branch

When a ne version of the gndors ource distribution arvies, thecheckin program adds
the nev and changed endors files to the already existing source repositdrgr files that hae
not been changed locallthe nev file from the endor becomes the current “headVision. For
files that hae been modified locallycheckin warns that the file must be merged with thevne
vendor release.Thecvs*“join” command is a useful tool that aids this process by performing the
necessarggcsmerge, as is done amwhen performing an “update.”

There is also limited support for “dual” degtions for source filesSee Figure 4 for a sam-
ple dual-dened file. Thisexample tracks the SunOS distribution but includes major changes
from Berkelg.. These BSD files arewad drectly in thercsfile off a new kranch.

www.manaraa.com

1.1.1.3
1.1.2.2
1.2 'BSD’
1.1.1.2
% 1.1.2.1
1.1
111 1.1.1.1
'SunOS’
rcsfile.c,v
Figure 4.

cvsSupport For “Dual” Denations

2.3. Locationindependent Module Database

cvs contains support for a simple, yet powerful, “module” datab&s®.reasons of &f
ciengy, this database is stored malbm (3) format. The module database is used to apply names
to collections of directories and files as a matter oemence for checking out pieces of agar
software distritution. Thedatabase records the physical location of the sources as a form of
information hiding, allaving one to check out whole directory hierarchies or individual files with-
out regard for their actual location within the global source distribution.

Consider the follwing small sample of a module database, which must be tailored manu-
ally to each specific source repository environment:

#key [-option argument] directory [files...]
diff bin/diff

libc lib/libc

Sys -0 sys/tools/make_links sys

modules -i mkmodules CVSROOT.adm modules
kernel -a sys lang/adb

ps bin Makefile ps.c

The “diff” and “libc” modules refer to whole directory hierarchies that are extracted on
check out. The “sys” module extracts the “sys” hieraycland runs the “make_links” program at
the end of the check out process (tbeoption specifies a program to run on ctmdk The
“modules” module alles one to edit the module database file and runs the “mkmodules” pro-
gram on chedk to regenerate thedbm database thatvsuses. Thekernel” module is an alias

www.manaraa.com

(as the-a option specifies) which causes the remaining arguments aftea tbebe interpreted
exactly as if thg had been specified on the command lifidis is useful for objects that require
shared pieces of code from faway places to be compiled (as is the case with #radd debg-
ger, kadb, which shares code with the standadb dehugger). The'ps” module shows that the
source for “ps” Wes in the “bin” directory but only Makefileand ps.care required to wild the
object.

The module database at Prisma isvnmpulated for the entire UNIX distribution and
thereby allows us to issue the following gemient commands to check out components of the
UNIX distribution without rggard for their actual location within the master source repository:

example% cvs checkout diff
example% cvs checkout libc ps
example% cd diff; make

In building the module database file, it is quite possible t@ mame conflicts within a
global software distrilition. For example, SunOS prales two cat programs: one for the stan-
dard ewironment,/bin/cat and one for the System V @nonment,/usr/5bin/cat We resolved
this conflict by naming the standasdt module “cat”, and the Systemaat module “5cat”. Sim-
ilar name modifications must be applied to other conflicting names, as might be found between a
utility program and a library function, though Prisma chose not to include individual library func-
tions within the module database at this time.

2.4. ConfigurableLogging Support

The cvs “commit” command is used to maka prmanent change to the master source
repository (where thecs*,v” files live). Wheneer a “commit” is done, the log message for the
change is carefully logged by an arbitrary program (in a file, notesfile, news database, or mail).
For example, a collection of these updates can be used to produce release mwSaEmn be
configured to send log updates through one or more filter programs, based on a xegesicn
match on the directory that is being changed. Thisvallmultiple related or unrelated projects to
exist within a singlecvs source repository tree, with each different project sending its “commit”
reports to a unique log device.

A sample logging configuration file might look as follows:

#regex filter-program

DEFAULT /usr/local/bin/nfpipe -t %s utils.updates
“diag /usr/local/bin/nfpipe -t %s diag.updates
“local {usr/local/bin/nfpipe -t %s local.updates
“perf {usr/local/bin/nfpipe -t %s perf.updates
“sys {usr/local/bin/nfpipe -t %s kernel.updates

This sample allows the diagnostics and performance groups to share the same source repos-
itory with the kernel and utilities groupshanges that tlyemake ae sent directly to theirven
notesfile [Essick] through the “nfpipe” program sufficiently simple title is substituted for the
“%s” argument before the filter program iseeuted. Thislogging configuration file is tailored
manually to each specific source repository environment.

2.5. Tagged Releases and Dates

Any release can bewgn a ymbolic tag name that is stored directly in thesfiles. This
tag can be used atyatime to get an exact cgmf any previous releaseWith equal ease, one can

www.manaraa.com

-8-

also extract an exact cppf the source files as of warbitrary date in the past as wellhus, all
that's required to tag the current kernel, and to tag the kernel as of the Fourth of July is:

example% cvs tag TEST_KERNEL kernel
example% cvs tag -D 'July 4 PATRIOTIC_KERNEL kernel

The following command would retve an exact copy of the test kernel at some later date:
example% cvs checkout -fp -rTEST_KERNEL kernel

The -f option causes only files that match the specified tag to be extracted, whiteaibigon
automatically prunes empty directorie€onsequentlydirectories added to theeknel after the
test kernel was tagged are not included in the newly extractgdttre test kernel.

The cvsdate support has exactly the same interface as that provideHagthoweve cvs
must process the “,v” files directly due to the special handling required by the vendor branch sup-
port. Thestandarckcsdate handling only processes one branch (or the main trunk) when check-
ing out based on a date specificatious must instead process the current “head” branch and, if a
match is not found, proceed to look for a match on the vendor brdis, combined with rea-
sons of performance, is wtcvs processes revision (symbolic and numeric) and date specifica-
tions directly from the “,v” files.

2.6. Building “patch” Source Distributions

cvscan produce a “patch” format [@M] output file which can be used to bring avyoesly
released software distribution current with thevest release. This patch file supports an entire
directory hierarcit within a single patch, as well as being able to add wholefites to the pre-
vious release. One can combine symbolic revisions and dates together to display changes in a
very generic way:

example% cvs patch -D 'December 1, 1988’ \
-D 'January 1, 1989’ sys

This example displays the kernel changes made in the month of DecelfB8r o release a
patch file, for example, to takhe cvsdistribution from version 1.0 to version 1.4 might be done
as follows:

example% cvs patch -rCVS_1 0-rCVS_1 4 cvs

3. CVSExperience

3.1. Statistics

A quick summary of the scale thatsis addressing today can be found in Tablddble 2
shaws the history of files changed or added and the number of source fewedby the change
at Prisma. Only changes made to the kernel sources are inclitedarge number of source
file changes made in September are the result ajingethe SunOS 4.0.3 sources into teerlel.
This merge process is described in section 3.3.

3.2. Rerformance

The performance ofvsis currently quite reasonabld.ittle effort has been expended on
tuning cvs dthough performance related decisions were made duringvihdesign. Br exam-
ple,cvsparses thecs*”,v” files directly instead of running arcsprocess. Thisncludes follav-
ing branches as well as integrating with tlendor source branches and the main trunk when

www.manaraa.com

Revision Control Statistics at Prismal
as of 11/11/89
How Mary... Total

Files 17243

Directories 1005

Lines of code 3927255

Remuwed files 131

Software deelopers 14

Software groups 6

Megabytes of source 128

Table 1.
cvs Statistics
Prisma Kernel Source File Changes
By Month, 1988-1989
Month # Changed #ines | #Added | #Llines
Files Changed| Files Added

Dec 87 3619 68 9266
Jan 39 4324 0 0
Feb 73 1578 5 3550
Mar 99 5301 18 11461
Apr 112 7333 11 5759
May 138 5371 17 13986
Jun 65 2261 27 12875
Jul 34 2000 1 58
Aug 65 6378 8 4724
Sep 266 23410 113 39965
Oct 22 621 1 155
Total 1000 62196 269 101799

Table 2.
cvsUsage History for the Kernel

checking out files based on a date.

Checking out the entire kernel source tree (1223 files/59 directories) currently taket 16 w
clock minutes on a Sun-4/28However, bringing the tree up-to-date with the currerriel
sources, once it has been checked out, takes onlyall. slack minutes. Updating theomplete
128 MByte source tree undews control (17243 files/1005 directories) takes roughly 28| w
clock minutes and utilizes one-third of the machirfeor now this is entirely acceptable;
improvements on these numbers will possibly be made in the future.

3.3. TheSunOS 4.0.3 Merge

The true test of thevs vendor branch support came with the wakiof the SunOS 4.0.3
source upgrade tape. As describedvabdhe checkin program was used to install thewne
sources and the resulting output file listed the files that had been locally modified, needing to be
meged manually For the kernel, there were 94 files in conflidihe cvs “join” command vas
used on each of the 94 conflicting files, and the remaining conflicts were resolved.

www.manaraa.com

-10-

The “join” command performs arcsmergeoperation. Thign turn usedustr/lib/diff3 to
produce a three-way difile. Asit happens, thaiff3 program has a hard-coded limit of 200
source-file changes maximum. This ye0 to be bo small for a fe of the kernel files that
needed merging by hand, due to thgdanumber of local changes that Prisma had madde.
diff3 problem was solved by increasing the hard-coded limit by an order of magnitude.

The SunOS 4.0.3 kernel source upgrade digiidlh contained 346 files, 233 of which were
modifications to previously released files, and 113 of which were newly addedcfieskin
added the 113 mefiles to the source repository without intemion. Ofthe 233 modified files,
139 dropped in cleanly bgheckin, since Prisma had not madeydocal changes to them, and 94
required manual mgmg due to local modifications. The 233 modified files consisted of 20,766
lines of diferences. Itook one deeloper two days to manually merge the 94 files using the
“join” command and resolving conflicts manualbAn additional day was required foreknel
delugging. Theentire process of mging over 20,000 lines of differences was completed in less
than a week. This one time-savings alone was justification enough favsheevelopment
effort; we expect to gainven more when tracking future SunOS releases.

4. Future Enhancements and Current Bugs

Sincecvswas designed to be incomplete, for reasons of design simplibigye are natu-
rally a good number of enhancements that can be made ® inmakre useful. As well, some
nuisances exist in the current implementation.

» cvsdoes not currently “remember” who has a clestkut a cop of a module. Asa
result, it is impossible to kmowho might be working on the same module that you are.
A simple-minded database that is updated nightly would likely suffice.

e Signal processing, dyboard interrupt handling in particulais aurrently somehat
weak. Thisis due to the heg use of thesystem(3) library function to gecute RCS
programs lile coandci. It sometimes takes multiple interrupts to realvs quit. This
can be fixed by using a home-grosystem() replacement.

e Security of the source repository is currently not dealt with direcilye usual UNIX
approach of user-group-other security permissions through the file system is utilized,
but nothing else.cvs could likely be a set-group-idkecutable that checks a protected
database toerify user access permissions for particular objects before allowiyng an
operations to affect those objects.

* With every checked-out directorycvs maintains some administrei files that record
the current revision numbers of the chedlout files as well as the location of the
respectre urce repository cvs does not recger nicely at all if these administrag
files are remeed.

¢ The source code farvs has been testediensvely on Sun-3 and Sun-4 systems, all
running SunOS 4.0 or later versions of the operating sys&inte the code has not yet
been compiled under other platforms, tlverall portability of the code is still question-
able.

* As witnessed in the previous section, ttwes method for tracking third partyendor
source distributions can work quite nicelidoweve, if the vendor changes the direc-
tory structure or the file names within the source distidm, cvshas no way of match-
ing the old release with the weone. Itis currently unclear as to twoto solve this,
though it is certain to happen in practice.

www.manaraa.com

5. Availability

The cvs program sources can be found in a recent posting tociimg.sources.unixews-
group. lItis also currently ilable via anonymous ftp from “prisma.comCopying rights for
cvswill be covered by the GNU General Public License.

6. Summary

Prisma has usecvs since Decemberl988. Ithas &olved to meet our specific needs of
revision and release controlVe will make aur code freely wailable so that others can benefit
from our work, and can enhancesto meet broader needs yet.

Many of the other software release and revision control systengsthiikone described in
[Glew], appear to use a collection of tools that are geasgadospecific environments — one set
of tools for the krnel, one set for “generic” software, one set for utilities, and one se¢ffoelk
and utilities. Each of these tool sets apparently handle some specific aspect of the problem
uniquely. cvstook a somewhat diérent approach. File sharing through symbolic or hard links is
not addressed; instead, the disk space is simplyeld since it is “chedp Support for producing
objects for multiple architectures is not addressed; instead, a parallel checked-out source tree
must be used for each architectureaingvasting disk space to simplify complexity and ease of
use — punting on this issue alled Makefiles to emain unchanged, unékhe approach taken in
[Mahler], thereby maintaining closer compatibility with the third-party vendor sourcesis
essentially a source-file sernymaking no assumptions or special handling of the sources that it
controls. Dcvs

A source is a source, of course, of course, unless of course the sourc&ifMr

Sources are maintainedyvsd, and retrigable at ay time based on symbolic or numeriwisgon
or date in the past. It is entirely updaswrapper programs to provide for releas#ismnments
and such.

The major advantage alvs over the man other similar systems that v& dready been
designed is the simplicity @vs cvscontains only three programs that do all the work of release
and revision control, and twmanually-maintained administraé files for each source repository
Of course, the deciding factor ofyatool is whether people use it, and if yheven like to use it.

At Prisma,cvsprevented members of the kernel group from killing each other.

7. Acknowledgements

Many thanks to Dick Grune at Vrije Uversiteit in Amsterdam for his work on the original
version ofcvsand for making it @ailable to the wrld. Thankgo Jef Polk of Prisma for helping
with the design of the module database, vendor branch support, and for writotgethén shell
script. Thankslso to the entire software group at Prisma for taking the timevieanréhe paper
and correct my grammar.

8. Refelences

[Bell] Bell Telephone Laboratories:Source Code Control System Use@uide.” UNIX
System Il Pogrammers Manual October 1981.

[Courington] Courington,W. The Network Softwar Environment Sun Technical Report
FE197-0, Sun Microsystems Inc, February 1989.

6 cvs, of course, does not really discriminate against 17
;
Yet.

www.manaraa.com

-12-

[EssicK] Essick,Raymond B. and Robert Bruceolstad. Notesfile Reference Manual
Department of Computer Science Technical Report #1081getdity of lllinois at
Urbana-Champaign, Urbana, lllinois, 1982, p. 26.

[Glew] Glew, Andy. “Boxes, Links, and Parallel Trees: Elements of a Configuration Man-
agement Systein. Wakshop Poceedings of the SoftweaManagement Confer
ence USENIX, Newv Orleans, April 1989.

[Grune] Grune, Dick. Distributed the original shell script version afvs in the
comp.sources.unixvolume 6 release in 1986.
[Honda] Honda,Masahiro and Terrence Miller*Software Management Using a CASE

Environment.” Wakshop Proceedings of the Softedvlanagement Confegnce
USENIX, Nav Orleans, April 1989.

[Mahler] Mabhler Alex and Andreas LampenAn Integrated Toolset for Engineering Soft-
ware Configurations. Proceedings of the ACM SIGSOFT/SIGPLAN So#war
Engineering Symposium on Practical Sofev@®ewelopment Emronments ACM,
Boston, Neember 1988. Described is thehape toolkit posted to the
comp.sources.unixnewsgroup in the volume 19 release.

[Tichy] Tichy, Walter £ “Design, Implementation, and Evaluation of aviBen Control
System.” Proceedings of the 6th International Conference on Soétkagineer-
ing, IEEE, Tokyo, September 1982.

[Wall] Wall, Larry. The patch program is an indispensable tool for applying & filié to
an original. Can be found on uunet.uu.net in “ftp/pub/patch.tar.

www.manaraa.com

